
1

Object-Oriented Design and Programming

Object and Class

The two most important concepts in Object-Oriented Design (OOD) and Object-Oriented
Programming (OOP) are Object and Class.

Objects are the primary building-blocks of the program. Objects are a bundle consisting
of data, (instance variables), together with methods. At any time, a subset of the
collection of a particular object’s attribute values comprises its state variables (see
below). Each object can be thought of as a distinct entity which maintains its state, the
current values of its state variables (or, simply, the object’s state). The execution of the
program consists of objects being created and destroyed and, while alive, going through a
sequence of state changes in response to its methods being invoked. When an object’s
method is invoked (by an object, possibly itself), the object is said to have received a
message.

The concept of Class has several points of view. One important one is that of a template
or object factory. Every object is an instance of a class. The class is responsible for
providing both the specifications for the objects (i.e. defining each instance variable and
each method) as well as the mechanism for creating and initializing the objects
(instantiation). A class specifies an object’s data by enumerating a list of instance
variables, declaring each variable’s type and name. The class specifies an object’s methods
by giving the method name, arguments, and return type (i.e. the value, if any, that is
returned by the method to the one invoking that method). An Object-Oriented language
provides a library of standard classes from which objects may be instantiated (created).
The programmer may also define classes, either from scratch, or by extending or
modifying existing classes via inheritance (see below).

A distinct, but related, perspective of Class is that of type; Classes are the object-oriented
embodiment of abstract data types. Instances of classes may be considered to be of that
classes type, and this information used to enforce parameter passing, return values, etc. A
more important use of Class as abstract data type is ensuring that an object will respond to
a given method. If that method is declared in the class definition and if an object is
declared to be of that class, then the given object will indeed respond to the method.
Being essentially static information, this enforcement may be made at compile time, the
preferred place to trap program errors.

2

Object Data

An object’s data may be refined into attributes, parts, and static associations. Attributes
consist of parameters, permanent values of the object, and state variables, which may
change value. Parts are references to other objects which only exist within the given
object. Static associations are references to objects outside the object with whom the
object will interact; the interactions take place when the object invokes one or more of the
associated object’s methods.

Encapsulation

Encapsulation (or information-hiding) is the rule that an object’s data may only be
changed by its methods. Each object is divided into its private part, which includes all its
data and may have some methods, and its public interface. Other objects may therefore
only interact with the given object by means of its public interface. The private part and
public interface of an object is defined by its class.

Encapsulation is one of the primary means by which OOP supports code reusability and
component-level modeling. Forbidding the direct manipulation of objects’ data means
objects must interact and communicate only through each others’ public interface. This in
turn encourages the design of objects which make fewer assumptions about their
environment (that is, the other objects with which inhabit the model). This tends to make
the objects more modular: if an object communicates with another object via given
methods, it is relatively easy to communicate with other objects which have the same
methods, even if the programmer had no idea the new objects were to be included in the
model. The internal data of the objects may bear little resemblance to each other, yet if
their behaviors (methods) are consistent and valid, then their internal representation is of
no interest to objects which interact with them. The net effect is that design decisions
made with respect to internal representations of objects are more easily modified and/or
enhanced with minimal impact on other parts of the model (i.e. the other interacting
objects). Decisions about the public interface, on the other hand, have much more impact
and require more careful design.

Conversely, models containing objects that violate Encapsulation (i.e. directly manipulate
the data of other objects) become difficult to extend and reuse. The internal representation
of each object is specified by existing objects to a much greater extent. Changes to that
internal data structure may necessitate drastic alterations of existing code, but not because
the latter is defective in any way. It is exceedingly difficult to merge existing classes and
objects which violate encapsulation, since Objects which are independently designed will
have different internal structures.

Encapsulation is supported by all Object-Oriented languages, but it is typically not
mandatory. It is therefore the responsibility of a program’s designers and implementers to
enforce. One device is the use of programming conventions. For example, it could be

3

declared that all instance variables be declared “private,” that is, are inaccessible to objects
outside the class in which they are declared.

To summarize, Encapsulation is the separation of an object’s public interface from its
internal implementation; users and peers of the object interact only with the interface and
should have no knowledge or dependence on the internal data and implementation.

Inheritance

Inheritance is the ability of a class to have all the data and methods of another class,
possibly adding additional data and methods. The two classes are in a subclass-superclass
relationship. Each instance of the subclass therefore has all the data and methods of the
superclass as well as the new ones defined by the subclass. Classes may thus be organized
into a class hierarchy, which can be represented as a rooted tree, with the root being the
superclass of all classes.

A class declared to be a subclass of another is automatically endowed with all the methods
and data of the superclass. Instances of the subclass respond to all the methods of the
superclass. If none of the superclass’s methods are overridden (see below), then instances
of the subclass should exhibit behavior that is indistinguishable from instances of the
superclass. Internally, however, an instance of the subclass may be different. For
example, data of the superclass may not be directly accessible to instances of the subclass.
In that manner, an instance of the subclass may be treated as if it were simply another
object. If the subclass adds new methods, then those methods may not necessarily be able
to directly manipulate inherited data.

A frequent use of inheritance is for behavior refinement. An existing class has a desired
behavior, but has implemented it in a manner that is not completely desirable. A subclass
is created and the method is re-written (i.e., overridden; see below).

Another frequent use of inheritance is for implementing abstract methods (see below).
Abstract methods are declared but not implemented. They are employed, for example,
when it is desired for a given class and its subclasses to have a method of a particular
name, but it is known that different subclasses may implement that method differently.
Declaring the abstract method insures the existence of the behavior (i.e. that all subclasses
will in fact respond to messages invoking that method) while allowing each subclass to
implement the method as required by its specifications.

There are two components to inheritance: the interface specification (i.e., the names and
signatures of the methods are obtained from the superclass) and the implementation
specification (i.e., for non-abstract classes the implementation is obtained from the
superclass). Groups of related method names may be represented as a “pure abstract
class,” which is also sometimes called an interface. These interfaces may be used to

4

specify the fact that a given class will have implemented all the listed methods. These
interfaces may also be used as type information for ensuring that objects respond to given
methods.

Multiple Inheritance is when a subclass has more than one immediate superclass. The
subclass inherits all the methods and data from all its superclasses. This design technique
may be useful in situations where more than one existing class has desired behaviors
implemented. One difficulty with multiple inheritance is the potential for name ambiguity.
Methods and data from different superclasses may have the same name, and it is the
responsibility of the subclass to resolve the conflict. There are potentially undesirable
design aspects to using multiple inheritance. One is a subtle violation of encapsulation: in
order to resolve name and data conflicts, details of the implementation of the superclass
must be known. Ideally, the public interface should be sufficient to “use” a class, whether
by subclassing or by instantiation.

One solution is to allow only single inheritance in implementation, but to allow multiple
inheritance with interfaces. In this scheme, a subclass may only inherit the actual methods
and data of one class, but may be specified as conforming to as many interfaces as desired.

Polymorphism

In OOP, polymorphism typically refers to the ability to have more than one method of the
same name. It can take a number of different forms.

One meaning of polymorphism is the fact that different classes may have methods of the
same name. This is a weak form of polymorphism, since the methods having identical
names may be coincidental. For example, both a random number generating class and a
class that displays graphics could have a method called draw(). This is sometimes called
ad hoc polymorphism. The utility of this type of polymorphism is more convenience than
design. The program designer can use method names without fear of conflict with
methods in other classes.

Method overloading is when the same class has multiple methods of the same name.
Typically they are distinguished by their signature, or argument list. The compiler thus
resolves a message utilizing that method by examining the signature. This is sometimes
called parametric polymorphism, and need not be confined to OO languages. The benefits
of overloading range from convenience to code robustness and reuse. Although it is not
required, whenever possible all methods of a given name in a class should invoke one
“master” method for the actual implementation. It is easier to verify the group of methods
when designed in this manner. Furthermore, changes or extensions are easier to
implement, since only the code in the master method needs to be changed.

Method Overriding occurs when a subclass redefines a method of its superclass. In this
case the new method is identical to the overridden method in both name and signature.
Instances of the subclass will respond to the new method, whereas objects which are

5

instantiated from the superclass will respond to the overridden method. The compiler
binds the object to the method depending on its class-determined type. If the subclass
defines a method of the same name, but different signature, as the superclass, then the
situation is more like method overloading. The subclass will have two methods with the
same name but different signatures. Objects which interact with instances of the subclass
won’t be able to tell whether a given method was defined in the superclass or the subclass.
Typically it is possible to explicitly invoke the superclass version of a method from the
subclass’s method. Overriding promotes code reuse in situations where an existing class is
almost what is desired, but a few methods have undesirable implementations (i.e.
unsuitable for the new use). The “bad” methods can simply be overridden, and the
duplication of effort involved with re-implementing the remainder of the class is spared.

Abstract methods are methods which must be overridden in a subclass before objects may
be instantiated. Classes containing abstract methods are abstract classes, and must be
sub-classed before objects may be instantiated. In other words, there can be no instances
of an abstract class. Abstract methods defer the responsibility of implementing methods
that are designed to be present in the class (and subclasses), yet are known to be
implemented differently in intended subclasses. Abstract methods enable a higher-level
design, since they may be used as a placeholder for desired behavior. The implementation
details for the desired behavior may vary with the different subclasses envisioned, or the
implementation details may not even be known yet. The designer may simply want to
defer the implementation in order to try out different algorithms for the method.

References

Booch, Grady. 1994. Object-Oriented Analysis and Design, with Applications, Second
Edition. Addison-Wesley, Menlo Park, CA.

Budd, Timothy. 1997. An Introduction to Object-Oriented Programming, Second
Edition. Addison-Wesley, Menlo Park, CA.

Cox, Brad and Andrew Novobilski. 1991. Object-Oriented Programming: An
Evolutionary Approach. Addison-Wesley, Menlo Park, CA.

6

